The complex influence of the Atmospheric Evaporative Demand on Drought severity

Sergio M. VICENTE-SERRANO
Instituto Pirenaico de Ecología Consejo Superior de Investigaciones Científicas

Changes in precipitation droughts

Spinoni et al. 2019

Dai and Zhao, 2017

Stagge, J., et al. (2017) Sci. Reports

Spinoni et al. 2018

Revisiting the recent European droughts from a long-term perspective

Martin Hanel ()1, Oldřich Rakovec ()2,1, Yannis Markonis ${ }^{1}$, Petr Máca ${ }^{1}$, Luis Samaniego $\oplus^{-1}{ }^{2}$, Jan Kyselý ${ }^{1,3}$ \& Rohini Kumar ${ }^{(1)}{ }^{2}$

Global Precipitation Trends across Spatial Scales
Using Satellite Observations
Phu Nguren,Andrea Thorstensen, Soroosh Sorooshian, Kuoun Hsu,Amir Aghakouchak,
Hamed Ashouri, Hoang Tran, and Dan Bratthwatte

8

ATMOSPHERIC EVAPORATIVE DEMAND

Evapotranspiration vs. AED

The evapotranspiration (ET) represents a upward water flux from soil, free water and plant leaves to the atmosphere.

The AED does not correspond to a land-atmosphere flux but to the capacity of the atmosphere to demand water (the drying -or evaporating- power of the atmosphere is another common word to refer to the same concept) as a function of its atmospheric condition, including radiative (determined by the net solar radiation) and aerodynamic (determined by the air temperature, wind speed and air humidity) components.

The reason of the confusion among these two very different variables is that under the "umbrella" concept of the AED, there are some AED metrics that also contain the term "evapotranspiration". They are the Potential Evaporation (ETp), the Reference Evapotranspiration (ETO) and the pan evaporation (Epan), which is a measurement of the AED.
$E T_{p}$ would correspond to the evaporation from a saturated surface (free water or 100% of humidity in natural vegetation or crops). ETp can be calculated using the Penman equation (Penman, 1948):

$$
E T_{p}=\frac{1}{\lambda} \frac{\Delta\left(R_{n}-G\right)+\rho c_{p} \frac{\left(e_{s}-e_{a}\right)}{r_{a}}}{\Delta+\gamma}
$$

There are other procedures to calculate ETp [e.g., the Priestley-Taylor equation, Milly and Dunne, 2016], but they are suboptimal since they do not consider both radiative and aerodynamic terms of the AED.

There are other two terms that are used to refer to the AED that are not recommended:
i) the first one is the saturation Vapour Pressure Deficit (VPD) $e_{s}-e_{a}$. Under conditions of non-saturated air the actual vapor pressure is lower that the saturation vapor pressure, so the difference among them is an indicator of the evaporative capacity of the air but it does not fully capture both radiative and aerodynamic components of the AED. VPD is involved in the calculation of the aerodynamic component, and it is one of the variables used to calculate ETp and ETo,
ii) the second term is the Potential Evapotranspiration (PET). The PET concept cannot be considered a universal concept since it does not represent a climate variable and strongly depends on the characteristics and type of the vegetation and the type of surface. Thus, PET would be close to the agronomic term of "water requirement" under non-limited water conditions, in which differences in vegetation height, leaf anatomy, stomatal characteristics, and even albedo are key variables and they would cause that the requirement differs from ETo under similar atmospheric conditions.

Atmospheric Evaporative Demand is driven by different mechanisms:

- Thermodynamic forcing (Bouchet's complementary relationship under low soil moiture and differential warming trend between oceanic and continental regions) connected with increased warming and no constant relative humidity.

The role of the AED is different on climate aridity and on drought

AED will always have a negative role on the climate aridity. It has been discussed the use of aridity indices for future climate projections given possible AED regulation by CO2 fertilization (further discussion next slides).

Nevertheless, it is doubtless that increased AED under constant precipitation will always increase drought severity.

- Thus, AED effects on drought severity are extremely complex given different economic sectors and natural systems affected and geographic differences.

Under an idealized scenario in which precipitation does not show temporal variations, the effect of the AED on drought severity can be completely different as a function of the precipitation climatology, and also the type of drought (hydrological vs. environmental/agricultural).

POSITIVE ENVIRONMENTAL/AGRICULTURAL:

Under unlimited water availability, AED effect would be positive for plant activity and growth since enhanced AED would favor plant transpiration, plant leaf area and the primary production (NPP).

NEGATIVE HYDROLOGICAL INFLUENCE:

Hydrological drought

DIRECT: evaporation in free water (streams, lakes and reservoirs) INDIRECT: increase in plant transpiration, which importance is higher than direct evaporation from the soil and water bodies.

During normal or humid periods, although the water losses by enhanced AED can have even a higher magnitude than in dry periods, they would not have relevance given sufficient water availability.

Nevertheless, the effects could increase downstream, in areas in which water uses depend on the water resources generated in other areas [e.g., the Mediterranean region in which the mountain headwater are strongly relevant for urban water supply and irrigation in the lowlands].

Hydrological drought

Environ./agric. drought

NEGATIVE HYDROLOGICAL

 INFLUENCE: It is expected that hydrological effects of the AED are small given low available water to evaporate. EXCEPTION:evaporation in big reservoirs and irrigated lands.

VERY NEGATIVE ENVIRONMENTAL/AGRICULTURAL INFLUENCE:

Although AED would not increase ETa in these areas, it increases the water stress by vegetation, causing an evapotranspiration deficit (i.e. the difference between the available water for transpiration and the water demand by the atmosphere). If evapotranspiration deficit is stronger than the tolerated by plants, it causes reductions in photosynthesis and net primary production, aboveground biomass and ultimately cause crop yield failure and forest mortality, as the most evident impacts.

PRECIPITATION
EFFECTS UNDER NORMAL CONDITIONS

ANOMALIES
EFFECTS UNDER NORMAL
CONDITIONS \square

MAGNITUDE AND TEMPORAL VARIANCE OF AED AND PRECIPITATION

Journal of Hydrology 526 (2015) 42-54

ELSEVIER

Contents lists available at ScienceDirect

Journal of Hydrology
journal homepage: www.elsevier.com/locate/jhydrol

Contribution of precipitation and reference evapotranspiration to drought indices under different climates

Sergio M. Vicente-Serrano ${ }^{\text {a,* }}$, Gerard Van der Schrier ${ }^{\text {b }}$, Santiago Beguería ${ }^{\text {c }}$, Cesar Azorin-Molina ${ }^{\text {a }}$, Juan-I. Lopez-Moreno ${ }^{\text {d }}$
${ }^{\text {a Instituto Pirenaico de Ecologia, Consejo Superior de Investigaciones Cientificas (IPE-CSIC), Spain }}$ ${ }^{\text {b }}$ Royal Netherlands Meteorological Institute (KNMI), 3730 AE De Bilt, Netherlands
¿Estación Experimental de Aula Dei (EEAD-CSIC), Zaragzaa, Spain

PDSI

SPEI

a)

It is necessary to stress that these general patterns may vary for specific drought events as a consequence of the particular precipitation and/or AED anomalies.

ETa vs. AED

Common confusion: Drought indices are not using AED as substitute of ETa

ETa is suggested to be included in metrics of drought severity

The use of ETa instead AED shows uncertainties to measure drought severity in water limited regions in which ETa is constrained by Precipitation and not by the AED.

In these regions no changes in drought severity would be normally identified under enhanced AED since P - ETa will usually tend to zero, and trends in ETa are strongly driven by trends in precipitation.

The key aspect is to compare the highest possible ETa (or AED) with the current water availability (e.g. the ETa or the soil moisture, ultimately determined by precipitation).

Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring

Santiago Beguería, ${ }^{\text {a }}$ Sergio M. Vicente-Serrano, ${ }^{\text {b* }}$ Fergus Reig ${ }^{\text {b }}$ and Borja Latorre ${ }^{\text {a }}$
${ }^{2}$ Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Cientificas (EEAD-CSIC), Zaragoza, Spain ${ }^{\text {b }}{ }^{\text {I Instituto Pirenaico de Ecologia, Consejo Superior de Investigaciones Cientificas (IPE-CSIC), Campus de Aula Dei, Zaragoza, Spain }}$

Figure 5. Average soil water content (W) (black line) (1961-2011), precipitation (P) (blue triangles), Reference Evapotranspiration (ET_{0}) (black triangles) and actual evapotranspiration $\left(\mathrm{ET}_{\mathrm{a}}\right)$ (circles) in Zaragoza (left) and Vigo (right).

Figure 7. Evolution of annual P, ET_{0}, " W " and " ET_{a} " in Zaragoza and Vigo between 1961 and 2011.

- ETa would make sense as a replacement of precipitation or soil moisture in drought metrics since it would be better estimator of the amount of water actually used by the vegetation, but never as a substitute of the AED.
- The difference between ETa and AED could provide more optimal indicator of the environmental and agricultural drought stress than other drought indices. This seems to be an optimal approach to monitor drought severity in vegetation areas under limited moisture conditions since the ETa is better metric of the real water use by vegetation than precipitation or soil moisture.

Global Assessment of the Standardized Evapotranspiration Deficit Index

 (SEDI) for Drought Analysis and MonitoringSergio M. Vicente-Serrano, a Diego G. Miralles, ${ }^{\text {b }}$ Fernando Domínguez-Castro, a Cesar Azorin-Molina, ${ }^{\text {c }}$ Ahmed El Kenawy, ${ }^{\text {a,d }}$ Tim R. McVicar, ${ }^{\text {e,f }}$ Miquel Tomás-Burguera, ${ }^{\text {g }}$ Santiago Beguería, ${ }^{\mathrm{g}}$ Marco Maneta, ${ }^{\text {h }}$ and Marina Peña-Gallardo ${ }^{\text {a }}$

FIG. 12. Spatial distribution of the SEDI, 3-month SPEI, and sNDVI during two extraordinary drought events recorded (top) in 1995 over the Iberian Peninsula and (bottom) in 1984 over the Sahel

Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness

Robert Vautard ${ }^{1 \star}$, Julien Cattiaux ${ }^{1}$, Pascal Yiou ${ }^{1}$, Jean-Noël Thépaut ${ }^{2}$ and Philippe Ciais ${ }^{1}$

Earth Syst. Dynam., 9, 915-937, 2018
https ://doi.org/10.5194/esd-9-915-2018 Author(s) 20.10 . © (1)

Recent changes of relative humidity: regiona connections with land and ocean processes

Sergio M. Vicente-Serrano ${ }^{1}$, Raquel Nieto ${ }^{2}$, Luis Gimeno ${ }^{2}$, Cesar Azorin-Molina ${ }^{3}$, Anita Drumond ${ }^{2}$, Ahmed El Kenawy ${ }^{1 / 4}$, Fernando Dominguez-Castro ${ }^{1}$, Miquel Tomas-Burguera ${ }^{5}$, and Ahmed El Kenawy ${ }^{1,4}$, Fernando Dominguez-Callardo

(a) HadISDH

Figure 1. Spatial distribution of the magnitude of change of RH (\% per decade) over the period 1979-2014 from the HadISDH (a) and ERA-Interim datasets (b). Results are provided for the boreal cold (October-March) and warm (April-September) seasons and annually.

Global Atmospheric Evaporative Demand over Land from 1973 to 2008
Kaicun Wang
State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science,
Beijing Normal University, Beijing, China
Robert E. Dickinson
Department of Geological Sciences, The Univensity of Texas at Austin, Austin, Texas
Shunlin Liang
Department of Geography, University of Maryland, College Park, College Park, Maryland

Fig. 8. The normalized linear trend of EP_{a} from 1973 to 2008 ($\%$ decade ${ }^{-1}$). The trends were calculated where air temperature,

Water Resources Research

RESEARCH ARTICLE Sensitivity of reference evapotranspiration to changes in

Key Points.

- ETo is senstive to changes in relative humidity and maximum temperature
- There are spatial gradient in the ETO There are spatial gradients in the ET
sensitivity
sensiviviy
Trends in ETo are explained by trends
meteorological parameters in Spain (1961-2011)

Sergio M. Visente-Serrano ${ }^{1}$, Cesar Azorin-Molina ${ }^{1}$, Arturo Sanchez-Lorenzo ${ }^{2}$, Jesús Revuelto ${ }^{1}$, Enrique Morán-Tejeda ${ }^{1}$, Juan I. López-Moreno ${ }^{1}$, and Francisco Espejo ${ }^{3}$

Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain, ${ }^{2}$ Department of Physics, University of Girona, Girona, Spa in, ${ }^{3}$ Agencia Estatal de Meteorologia, Spain

Recent changes and drivers of the atmospheric evaporative demand in the Canary Islands
Sergio M. Vicente-Serrano ${ }^{1}$, Cesar Azorin-Molina ${ }^{1}$,Arturo Sanchez-Lorerz 0^{1}, Ahmed El Kenaw y^{2},

Geophysical Research Letters

RESEARCH LETTER Revisiting Pan Evaporation Trends in Australia a Decade on
10.1029/2018GL079332

Neypams
 previously attributed to dectessing

'Water Research Centre, 5chool of Civil and Environmental Engineering UNSW, Sydney, New 5outh Wales, Australia, ${ }^{2}$ C5 and and Water, Canbenta, ACT, Australia, ${ }^{\text {B }}$ Australian Research Council Centre of Excellence for Climate 5ystem 5 cienc sydney, New 5outh Wales, Australia

2017 DROUGHT

La sequía deja las primeras restricciones de agua para consumo humano en Castilla－La Mancha

España se enfrenta a una de las sequías más destructivas de la historia

España se enfrenta en 2017 a una de las sequías más graves de la historia ¿Por qué ahora？¿Podemos ovitar una sequía igual el futuro？
$=\quad$ Sellande

30 départements en état de crise comprendre la sécheresse qui touche la France \qquad

Sécheresse ： 21 départements classés en «crise hydrique»

Sécheresse ：la France atteint

 maturomanement da cortakn．

Volumi di acqua immessa nelle reti comunali
 tazioni e della searsito die rifornimento idrico．Enoo le mappe der consinmie deglis sprechi in taclia a Panan Cmen

ECONOMÍA
Retina CincoDias ${ }^{\circ}$ Nmocios

La sequía rebaja los ingresos del campo en $\mathbf{2 . 5 0 0}$ millones

Los pagos por indemnizaciones previstos por las companías de seguros para agricultores se estiman en 725 millones

Allarme siccità：piogge e consumi d＇acqua in Italia

Radiografía de la sequía extrema en Esp

Retrato de una España atrapada en la sequía El ano hidrologico ha concluido con cifras preocupantes．Estos son los datos que fundamentan la alarma © 0 © －${ }^{-8}$
\equiv ELPAIS

It riconoscimento delliemergenza sospenderebbe per le imprese il pagamento delle rate di mutuo e dei contributi．Secondo un analisi della mancanza di precipitazioní e della scarsità di rifornimento idrico． Il bacino del Garda pieno per un terzo

Siccità， 10 Regioni pronte a chiedere lo stato di calamità e le misure di sostegno per le aziende

Il riconoscimento dell＇mergenza sospenderebbe per le imprese il

L＇Italie frappée par une sécheresse historique，le rationnement de l＇eau courante envisagé à Rome fロロー

Drought 2016/2017

García-Herrera et al. (2019): Journal of Climate

ESA CENTENNIAL PAPER

On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene

$$
\text { Craig }_{\text {D. Allen },}{ }^{1} \dagger \text { David D. Breshears, }{ }^{2} \text { and Nate G. McDowele }{ }^{3}
$$

${ }^{1}$ U.S. Geological Survey, Fort Collins Science Center, Jemez Mountains Field Station, Los Alamos, New Mexico 87544 USA ${ }^{2}$ School of Natural Resources and the Environment, joint with the Department of Ecology and Evolutionary Biology,

University of Arizona, Tucson, Arizona 85745 USA
${ }^{3}$ Earth and Environmental Science Division, MS-J495, Los Alamos National Laboratory, Los Alamos, New Mexico 85745 USA

Anthropogenic warming has increased drought risk in California
Noah S. Diffenbaugh ${ }^{\text {a.b, }, 1}$, Daniel L. Swain ${ }^{\text {a }}$, and Danielle Touma ${ }^{\text {a }}$
"Department of Environmental Earth System Science and 'Woods Institute for the Environment, Stanford University, Stanford, CA 94305
Edited by Jane Lubchenco, Oregon State University, Corvallis, OR, and approved January 30 , 2015 (received for review November 22, 2014) California is currently in the midst of a record-setting drought. The which steered Pacific storms away from California over consec-
drought began in 2012 and now includes the lowest calendar-year
utive seasons $(8-11)$. Although the extremely persistent high

Water Resources Research

RESEARCH ARTICLE	On the Causes of Declining Colorado River Streamflo
10.1029/2018WR 023153	
Key Points: - The naturalized flow of the colorado River has decreased about 15% over	${ }^{1}$ Department of Geography, University of Califomia, Los Angeles, CA, U5A, ${ }^{2}$ Colorado Water Institute, Colorado 5tate University, Fort Collins, CO, U5A

Water Resources Research

RESEARCH ARTICLE The twenty-first century Colorado River hot drought and
$10.1002 / 2016 \mathrm{WR} 019638$
Key Points: implications for the future

- Record Colbrado Riverflow

Evidence of increasing drought severity caused by temperature rise in southern Europe

Sergio M Vicente-Serrano ${ }^{1}$, Juan-I Lopez-Moreno ${ }^{1}$, Santiago Beguería ${ }^{2}$, Jorge Lorenzo-Lacruz ${ }^{1}$, Arturo Sanchez-Lorenzo ${ }^{3}$, José M García-Ruiz ${ }^{1}$, Cesar Azorin-Molina ${ }^{1}$, Enrique Morán-Tejeda ${ }^{1}$, Jesús Revuelto ${ }^{1}$,
Ricardo Trigo ${ }^{4}$, Fatima Coelho ${ }^{5}$ and Francisco Espejo ${ }^{6}$

Camarero et al., (2015): Journal of Ecology

$19901995200020051990199520002005199019952000200519901995 \quad 2000 \quad 2005$
Carnicer et al., (2011): PNAS (2011), 108: 1474

FUTURE SCENARIOS?

Dai et al. 2018

©AGUPUBICATIONS

Water Resources Research

RESEARCH ARTICLE On the assessment of aridity with changes in atmospheric CO_{2}
10.1002/2015WR017031 Michael L. Roderick ${ }^{1,2,3}$, Peter Greve ${ }^{4}$, and Graham D. Farquhar ${ }^{2,3}$
4.1. A Flux-Based Approach for Assessing Changes in Aridity

We begin with the usual water balance equation,

$$
\begin{equation*}
\frac{d S}{d t}=P-\left(E_{t}+E_{s}\right)-Q \tag{2}
\end{equation*}
$$

where the rate of change in water storage $(d S / d t)$ is determined by inputs of precipitation (P) and outputs of evaporation (E) and runoff (Q). The total E is separated into two components, (i) transpiration $\left(E_{\mathrm{t}}\right)$ and (ii) a residual term that includes all other sources of evaporation $\left(E_{\mathrm{s}}\right)$. Note that E_{s} includes fluxes such as evapo-

$$
W=\frac{A}{E_{t}},
$$

the steady state water balance can be rewritten as,

$$
P \approx \frac{A}{W}+E_{s}+Q .
$$

Current Climate Change Reports (2018) 4:202-209
https://doi.org/10.1007/s40641-018-0094-1

CLIMATE CHANGE AND DROUGHT (Q FU, SECTION EDITOR)

Drought Indices, Drought Impacts, CO_{2}, and Warming: a Historical and Geologic Perspective

Plant responses to increasing CO_{2} reduce estimates of climate impacts on drought severity

Abigail L. S. Swann ${ }^{\text {a,b, }, 1}$, Forrest M. Hoffman ${ }^{\text {c,d }}$, Charles D. Koven ${ }^{e}$, and James T. Randerson ${ }^{f}$

${ }^{2}$ Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195; 'Department of Biology, University of Washington, Seattle, WA 98195; ${ }^{\text {C C Computer Science } \& ~ M a t h e m a t i c s ~ D i v i s i o n, ~ O a k ~ R i d g e ~ N a t i o n a l ~ L a b o r a t o r y, ~ O a k ~ R i d g e, ~ T N ~ 37831 ; ~}{ }^{\text {dEnvironmental Sciences Division, Oak Ridge National }}$ Laboratory, Oak Ridge, TN 37831; "Climate \& Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and 'Department of Earth System Science, University of California, Irvine, CA 92697

$E_{\mathrm{p}}=\frac{0.408 s R_{\mathrm{n}}{ }^{*}+\gamma \frac{900}{T+273} u D}{s+\gamma\left\{1+u\left[0.34+2.4 \times 10^{-4}\left(\left[\mathrm{CO}_{2}\right]-300\right)\right]\right\}}$

C Budyko estimated ΔQ, using PM-RC

e Budyko estimated ΔQ, using $P M-\left[\mathrm{CO}_{2}\right]$

Yang et al. 2019: Nat Clim. Ch.

Humid site (East US)

Dry site (West US)

1950196019701980199020002010202020302040205020602070208020902100

Large divergence of satellite and Earth system model estimates of global terrestrial CO_{2} fertilization

W. Kolby Smith ${ }^{1,2 \star}$, Sasha C. Reed ${ }^{3}$, Cory C. Cleveland', Ashley P. Ballantyne ${ }^{1}$,

William R. L. Anderegg ${ }^{4}$, William R. Wieder ${ }^{5,6}$, Yi Y. Liu ${ }^{7}$ and Steven W. Running ${ }^{1}$

Chapter 2

Water-use efficiency and transpiration across European forests during the Anthropocene

1990; Bowes 19: photosynthesi known among

Global Change Biology (2007) 13, 2498-2508, doi: 10.1111/j.1365-2486.2007.01467.x
Water savings in mature deciduous forest trees under elevated CO_{2}

SEBASTIAN LEUZINGER and CHRISTIAN KORNER
Institute of Botary, University of Basee, Schönbeinstrasse 6, CH-4056 Basel, Switzerland

Increased WUE compensated by:
Legthened growing season Increased leaf area index
Enhanced AED
10% reduction at 540 p.p.m.

- What about vegetation changes? E.g. the recent Mediterranean trends

ESA CENTENNIAL PAPER

On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene

$$
\text { Craig D. Allenn, }{ }^{1} \dagger \text { David D. Breshears, }{ }^{2} \text { and Nate G. McDowelle }{ }^{3}
$$

${ }^{1}$ U.S. Geological Survey, Fort Collins Science Center, Jemez Mountains Field Station, Los Alamos, New Mexico 87544 USA
${ }^{2}$ School of Natural Resources and the Environment, joint with the Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85745 USA
${ }^{3}$ Earth and Environmental Science Division, MS-J495, Los Alamos National Laboratory, Los Alamos, New Mexico 85745 USA

3. CO_{2} Fertilzation \& WUE

Sufficient to compensate. CO_{2} fertilization and water-use efficiency effects generally compensate for drought and hea stress, fostering increased tree growth and NPP, widesprea woody plant expansion in dryland ecosystems, and an overall "greening" observed in many regions.

Effects limited; no benefit during severe drought. Mortality processes associated with growing drought and heat stress already are overcoming CO_{2} fertilization and water-use efficiency buffering at times and across extensive regions, with forest "browning" and NPP declines, reductions in forest growth, and markedly greater tree mortality observed in multiple regions of growing water stress in recent decades

Correct assessment of the AED effect on drought severity:

Be carefull considering the region of interest, the drought type and

the precipitation/soil moisture conditions

Multidisciplinary approaches:

Hydrology
Agronomy
Plant Physiology
Meteorology

